myqsort/qsort.h

648 lines
20 KiB
C
Raw Permalink Normal View History

/* Quick sort in C */
#ifndef MY_QUICKSORT_H
#define MY_QUICKSORT_H
/* Used in quicksort_rand3_sp under which we call regular quicksort_rand3 without singlepassing */
#ifndef RAND3_SP_VAL
#define RAND3_SP_VAL 64
#endif
#include <stdint.h>
2025-04-07 03:20:37 +02:00
/* Uncomment for debugging with if(someevent) raise(SIGINT); */
#include <signal.h>
/* Structure:
*
* - BASICS: Basic quicksort
* - RANDOMPIV: Randomized pivoting and partitioning by given pivot-indexed element.
* - MINMAX: partitioning while doing min-max over the whole + related extras.
* - PMINMAX: Partitioning with min-max searches in generated partitions + related.
* - VALPART: Partitioning by value - not by random or given pivot index!
*/
/* BASICS */
/** Swap operation */
static inline void swapit(uint32_t *a, uint32_t *b) {
uint32_t t = *a;
*a = *b;
*b = t;
}
/**
* Partition the array and find the pivot element such that
*
* - Elements smaller than pivot are on left of pivot
* - Elements greater than pivot are on right of pivot
*
* @param array The array to partition
* @param low From when. (inclusive)
* @param high Until when. (inclusive too!)
* @returns The partition point.
*/
static inline int partition(uint32_t array[], int low, int high) {
/* This is "Lomuto"s unidirectional partitioner - see algorithms book */
/* select the rightmost element as pivot */
uint32_t pivot = array[high];
/* index until smaller or eq elements lay */
int i = (low - 1);
/* traverse each element of the array */
/* compare them with the pivot */
#pragma GCC unroll 4
for (int j = low; j < high; ++j) {
if (array[j] <= pivot) {
/* if element smaller than pivot is found */
/* swap it with the greater element pointed by i */
++i;
/* swap element at i with element at j */
swapit(&array[i], &array[j]);
}
}
/* swap the pivot element with the greater element at i */
swapit(&array[i + 1], &array[high]);
/* return the partition point */
return (i + 1);
}
/** Simple in-place recursive quicksort on array for elements in [low, high) indices */
static inline void quicksort(uint32_t array[], int low, int high) {
if (low < high) {
int pi = partition(array, low, high);
/* recursive call on the left of pivot */
quicksort(array, low, pi - 1);
/* recursive call on the right of pivot */
quicksort(array, pi + 1, high);
}
}
/* THREEWAY */
struct pret3 {
int leftend;
int rightend;
};
typedef struct pret3 pret3;
/**
* Partition the array threeway by puutting ALL pivots to the middle and smaller/biggers left-right
*
* @param array The array to partition
* @param low From when. (inclusive)
* @param high Until when. (inclusive too!)
* @param pivotval This value is used to partition the array.
* @returns The partition points, end of left and right (inclusive)
*/
static inline pret3 partition3(uint32_t array[], int low, int high, uint32_t pivotval) {
/* index until smaller or eq elements lay */
int i = (low - 1);
uint32_t pc = 0;
/* traverse each element of the array */
/* compare them with the pivotval */
#pragma GCC unroll 4
2025-04-08 01:18:40 +02:00
for (int j = low; j <= high; ++j) {
/* Branchless pivot-count */
pc += (array[j] == pivotval);
if(array[j] < pivotval) {
/* if element smaller than pivotval is found */
/* swap it with the greater element pointed by i */
++i;
/* swap element at i with element at j */
swapit(&array[i], &array[j]);
}
}
/* Can spare out the second loop in these cases */
if(pc < 2) {
pret3 ret;
ret.leftend = i;
ret.rightend = i + 1;
return ret;
}
/* index until smaller or eq elements lay */
int i2 = (high + 1);
#pragma GCC unroll 4
for (int j = high; j > i; --j) {
if (array[j] > pivotval) {
/* if element smaller than pivot is found */
/* swap it with the greater element pointed by i */
--i2;
/* swap element at i with element at j */
swapit(&array[i2], &array[j]);
}
}
/* return the partition points */
pret3 ret;
ret.leftend = i;
ret.rightend = i2;
return ret;
}
/**
* Partition the array threeway by puutting ALL pivots to the middle and smaller/biggers left-right.
* Single-pass version.
*
* @param array The array to partition
* @param low From when. (inclusive)
* @param high Until when. (inclusive too!)
* @param pivotval This value is used to partition the array.
* @returns The partition points, end of left and right (inclusive)
*/
static inline pret3 partition3_sp(uint32_t array[], int low, int high, uint32_t pivotval) {
/* Invariant for left: index until smaller (than pivot) elements lay */
int il = (low - 1);
/* Invariant for right: index until (from top) bigger elements lay */
int ir = (high + 1);
/* Indices from where we swap left and right into "is" (and sometimes swap among here too) */
int jl = low;
int jr = high;
while(jl <= jr) {
/* Jump through any pivot elements */
while((array[jl] == pivotval) && (jl < high)) ++jl;
while((array[jr] == pivotval) && (jr > low)) --jr;
if(jl > jr) break;
if(array[jl] < pivotval) {
/* if element smaller than pivotval is found */
/* swap it with the element pointed by i */
++il;
if(il != jl) swapit(&array[il], &array[jl]);
} else {
/* Here its sure a[jl] and a[jr] are not pivots */
/* Which means array[jl] > pivotval and on left */
if(array[jr] < pivotval) {
/* We can totally safely just swap them */
/* Because both are in wrong places.... */
swapit(&array[jl], &array[jr]);
/* swap it with the element pointed by i */
++il;
if(il != jl) swapit(&array[il], &array[jl]);
} else {
/* Left->right move needed, but right is */
/* at good place already so handle that! */
/* ensured: if(array[jr] > pivotval) */
/* Progress invariants */
/* swap with the element pointed by i */
--ir;
if(ir != jr) swapit(&array[ir], &array[jr]);
/* Because of swap we might swaped in pivot! */
/* So continue our loop but do not step jl! */
/* ++jl; // incomplete so no step! */
--jr; /* STEP RIGHT because "continue"! */
continue;
}
}
/* Step left being processed */
++jl;
if(array[jr] > pivotval) {
/* if element bigger than pivotval is found */
/* swap it with the element pointed by i */
--ir;
if(ir != jr) swapit(&array[ir], &array[jr]);
} else {
/* On wrong side - so we just need to look */
/* for left-wrong-sided to swap it with! */
continue; /* I think no ++jl needed! */
}
/* Step right being processed */
--jr;
}
/* return the partition points */
pret3 ret;
ret.leftend = il;
ret.rightend = ir;
return ret;
}
/**
* Partition the array threeway by puutting ALL pivots to the middle and smaller/biggers left-right.
* Single-pass version 2.0
*
* @param array The array to partition
* @param low From when. (inclusive)
* @param high Until when. (inclusive too!)
* @param pivotval This value is used to partition the array.
* @returns The partition points, end of left and right (inclusive)
*/
static inline pret3 partition3_sp2(uint32_t array[], int low, int high, uint32_t pivotval) {
/* Invariant for left: index until smaller (than pivot) elements lay */
int il = (low - 1);
/* Invariant for right: index until (from top) bigger elements lay */
int ir = (high + 1);
/* Indices from where we swap left and right into "is" (and sometimes swap among here too) */
int jl = low;
int jr = high;
while(jl <= jr) {
/* Handle left and find wrongly placed element */
while((array[jl] <= pivotval) && (jl <= jr)) {
int isNonPivot = (array[jl] != pivotval);
int nonSameIndex = (il + 1 != jl);
if(isNonPivot & nonSameIndex)
swapit(&array[il + 1], &array[jl]);
il += isNonPivot;
++jl;
}
/* Handle right and find wrongly placed element */
while((array[jr] >= pivotval) && (jl <= jr)) {
int isNonPivot = (array[jr] != pivotval);
int nonSameIndex = (ir - 1 != jr);
if(isNonPivot & nonSameIndex)
swapit(&array[ir - 1], &array[jr]);
ir -= isNonPivot;
--jr;
}
/* Swap the two found elements that are wrongly placed */
if(jl < jr) swapit(&array[jl], &array[jr]);
}
/* return the partition points */
pret3 ret;
ret.leftend = il;
ret.rightend = ir;
return ret;
}
/* RANDOMPIV */
/**
* Partition the array and using the pivot index
*
* - Elements smaller than pivot are on left of pivot
* - Elements greater than pivot are on right of pivot
*
* @param array The array to partition
* @param pi The index of the pivot element to use. 0 or high is what OG quicksorts do.
* @param low From when. (inclusive)
* @param high Until when. (inclusive too!)
* @returns The partition point.
*/
static inline int partition_with_pivot(uint32_t array[], int pi, int low, int high) {
/*
* Rem.: This looks like overhead,
* but after seriously considering
* writing the whole out I can tell
* this is still fastests basically.
*/
/* swap pivot with rightmost */
swapit(&array[high], &array[pi]);
/* delegate to previous sol. */
return partition(array, low, high);
}
// 32-bit LCG for fast random generations
static inline uint32_t lcg(uint32_t *state) {
*state = *state * 1664525u + 1013904223u;
return *state;
}
/** Get pivot index in [0, len-1] without modulus - see our fastrand.h */
static inline uint32_t pick_pivot(uint32_t *state, uint32_t len) {
uint32_t rand = lcg(state);
/* Multiply by len, take the upper 32 bits of the 64-bit result */
return (uint32_t)(((uint64_t)rand * len) >> 32);
}
typedef uint32_t rpivotstate;
/** Randomized pivoting in-place recursive quicksort on array for elements in [low, high] indices */
static inline void quicksort_rand(uint32_t array[], int low, int high, rpivotstate *state) {
if (low < high) {
int pi = pick_pivot(state, (high + 1) - low) + low;
pi = partition_with_pivot(array, pi, low, high);
/* recursive call on the left of pivot */
quicksort_rand(array, low, pi - 1, state);
/* recursive call on the right of pivot */
quicksort_rand(array, pi + 1, high, state);
}
}
/* THREEWAY_RAND */
/** Randomized pivoting in-place recursive quicksort on array for elements in [low, high] indices */
static inline void quicksort_rand3(uint32_t array[], int low, int high, rpivotstate *state) {
if (low < high) {
/* partition threeway by random pivot */
int pi = pick_pivot(state, (high + 1) - low) + low;
pret3 res = partition3(array, low, high, array[pi]);
/* recursive call on the left of pivot */
quicksort_rand3(array, low, res.leftend, state);
/* recursive call on the right of pivot */
quicksort_rand3(array, res.rightend, high, state);
}
}
/** Randomized pivoting in-place recursive quicksort on array for elements in [low, high] indices */
static inline void quicksort_rand3_sp(uint32_t array[], int low, int high, rpivotstate *state) {
if (low < high) {
/* partition threeway by random pivot */
int pi = pick_pivot(state, (high + 1) - low) + low;
pret3 res;
if(high - low > RAND3_SP_VAL) res = partition3_sp(array, low, high, array[pi]);
else res = partition3(array, low, high, array[pi]);
/* recursive call on the left of pivot */
quicksort_rand3_sp(array, low, res.leftend, state);
/* recursive call on the right of pivot */
quicksort_rand3_sp(array, res.rightend, high, state);
}
}
/** Randomized pivoting in-place recursive quicksort on array for elements in [low, high] indices */
static inline void quicksort_rand3_sp2(uint32_t array[], int low, int high, rpivotstate *state) {
if (low < high) {
/* partition threeway by random pivot */
int pi = pick_pivot(state, (high + 1) - low) + low;
pret3 res;
res = partition3_sp2(array, low, high, array[pi]);
/* if(high - low > RAND3_SP_VAL) res = partition3_sp2(array, low, high, array[pi]);
else res = partition3(array, low, high, array[pi]); */
/* recursive call on the left of pivot */
quicksort_rand3_sp2(array, low, res.leftend, state);
/* recursive call on the right of pivot */
quicksort_rand3_sp2(array, res.rightend, high, state);
}
}
/* MINMAX */
/**
* Partition the array while doing a min-max search and find the pivot element such that
*
* - Elements smaller than pivot are on left of pivot
* - Elements greater than pivot are on right of pivot
*
* @param array The array to partition
* @param low From when. (inclusive)
* @param high Until when. (inclusive too!)
* @param minout OUT: Will be filled with the minimum key
* @param maxout OUT: Will be filled with the maximum key
* @returns The partition point.
*/
static inline int partition_and_minmax(uint32_t array[], int low, int high, uint32_t *minout, uint32_t *maxout) {
/* This is "Lomuto"s unidirectional partitioner - see algorithms book */
/* select the rightmost element as pivot */
uint32_t pivot = array[high];
*minout = pivot;
*maxout = pivot;
/* index until smaller or eq elements lay */
int i = (low - 1);
/* traverse each element of the array */
/* compare them with the pivot */
#pragma GCC unroll 4
for (int j = low; j < high; ++j) {
/* Branchless min-max */
*minout = array[j] < *minout ? array[j] : *minout;
*maxout = array[j] > *maxout ? array[j] : *maxout;
/* Lomuto partitioning */
if (array[j] <= pivot) {
/* if element smaller than pivot is found */
/* swap it with the greater element pointed by i */
++i;
/* swap element at i with element at j */
swapit(&array[i], &array[j]);
}
}
/* swap the pivot element with the greater element at i */
swapit(&array[i + 1], &array[high]);
/* return the partition point */
return (i + 1);
}
/**
* Partition the array and min-max and using the pivot index
*
* - Elements smaller than pivot are on left of pivot
* - Elements greater than pivot are on right of pivot
*
* @param array The array to partition
* @param pi The index of the pivot element to use. 0 or high is what OG quicksorts do.
* @param low From when. (inclusive)
* @param high Until when. (inclusive too!)
* @param minout OUT: Will be filled with the minimum key
* @param maxout OUT: Will be filled with the maximum key
* @returns The partition point.
*/
static inline int partition_and_minmax_with_pivot(uint32_t array[], int pi, int low, int high, uint32_t *minout, uint32_t *maxout) {
/*
* Rem.: This looks like overhead,
* but after seriously considering
* writing the whole out I can tell
* this is still fastests basically.
*/
/* swap pivot with rightmost */
swapit(&array[high], &array[pi]);
/* delegate to previous sol. */
return partition_and_minmax(array, low, high, minout, maxout);
}
/* PMINMAX */
/**
* Partition the array with partition-based min-max search (4 values: 2 per partition) and find the pivot element such that
*
* - Elements smaller than pivot are on left of pivot
* - Elements greater than pivot are on right of pivot
*
* (***): The left min-max outputs can return not just the left partition, but left partition ++ pivotpoint region min-max!
* This does not only happen if partition is empty, but also when pivot was already highest and last earlier.
* Would be hard to handle this edge-case and min-max out is generally used as output hints only so I prefer speed..
*
* @param array The array to partition
* @param low From when. (inclusive)
* @param high Until when. (inclusive too!)
* @param minout_left OUT: Will be filled with the minimum key of left partition or pivot value when partition empty. Also (***)
* @param maxout_left OUT: Will be filled with the maximum key of left partition or pivot value when partition empty. Also (***)
* @param minout_right OUT: Will be filled with the minimum key of right partition or pivot value when partition empty
* @param maxout_right OUT: Will be filled with the maximum key of right partition or pivot value when partition empty
* @returns The partition point.
*/
static inline int partition_and_pminmax(
uint32_t array[],
int low,
int high,
uint32_t *minout_left,
uint32_t *maxout_left,
uint32_t *minout_right,
uint32_t *maxout_right) {
/* This is "Lomuto"s unidirectional partitioner - see algorithms book */
/* select the rightmost element as pivot */
uint32_t pivot = array[high];
*minout_left = pivot;
*maxout_left = pivot;
*minout_right = pivot;
*maxout_right = pivot;
/* index until smaller or eq elements lay */
int i = (low - 1);
/* traverse each element of the array */
/* compare them with the pivot */
#pragma GCC unroll 4
for (int j = low; j < high; ++j) {
/* Lomuto partitioning */
if (array[j] <= pivot) {
/* Branchless min-max */
*minout_left = array[j] < *minout_left ? array[j] : *minout_left;
*maxout_left = array[j] > *maxout_left ? array[j] : *maxout_left;
/* if element smaller than pivot is found */
/* swap it with the greater element pointed by i */
++i;
/* swap element at i with element at j */
swapit(&array[i], &array[j]);
} else {
/* Branchless min-max */
*minout_right = array[j] < *minout_right ? array[j] : *minout_right;
*maxout_right = array[j] > *maxout_right ? array[j] : *maxout_right;
}
}
/* swap the pivot element with the greater element at i */
swapit(&array[i + 1], &array[high]);
/* return the partition point */
return (i + 1);
}
/**
* Partition the array with partition-based min-max search (4 values: 2 per partition) and using the pivot index
*
* - Elements smaller than pivot are on left of pivot
* - Elements greater than pivot are on right of pivot
*
* @param array The array to partition
* @param pi The index of the pivot element to use. 0 or high is what OG quicksorts do.
* @param low From when. (inclusive)
* @param high Until when. (inclusive too!)
* @param minout OUT: Will be filled with the minimum key
* @param maxout OUT: Will be filled with the maximum key
* @returns The partition point.
*/
static inline int partition_and_pminmax_with_pivot(
uint32_t array[],
int pi,
int low,
int high,
uint32_t *minout_left,
uint32_t *maxout_left,
uint32_t *minout_right,
uint32_t *maxout_right) {
/*
* Rem.: This looks like overhead,
* but after seriously considering
* writing the whole out I can tell
* this is still fastests basically.
*/
/* swap pivot with rightmost */
swapit(&array[high], &array[pi]);
/* delegate to previous sol. */
return partition_and_pminmax(array, low, high, minout_left, maxout_left, minout_right, maxout_right);
}
/* VALPART */
/**
* Partition the array using pivot value - and find pivot closest to that value (and place them at proper pivot index)
*
* - Elements smaller-eq than pivotval are on left of pivot
* - Elements greater than pivotval are on right of pivot
* - The "pivot" element we find is the biggest among the ones smaller-eq to the pivot value
* or if there is no such (all is greater) we return first greater-than value index (right[0])
*
* @param array The array to partition
* @param low From when. (inclusive)
* @param high Until when. (inclusive too!)
* @param pivotval This value is used to partition the array.
* @returns The partition point.
*/
static inline int partition_with_pivotval(uint32_t array[], int low, int high, uint32_t pivotval) {
/* This is "Lomuto"s unidirectional partitioner - see algorithms book */
/* Select the rightmost element as pivot just because */
/* Need some start-value for min(abs(pv - p)) search! */
int64_t leftmax = -1;
/* Index of currently found pivot value */
uint32_t pivoti = low;
/* index until smaller or eq elements lay */
int i = (low - 1);
/* traverse each element of the array */
/* compare them with the pivotval */
/* The "<=" is needed for our trickz here too */
#pragma GCC unroll 4
for (int j = low; j <= high; ++j) {
/* This "<=" ensures pivoti must be only searched among "left" values! */
if (array[j] <= pivotval) {
/* if element smaller than pivot is found */
/* swap it with the greater element pointed by i */
++i;
/* swap element at i with element at j */
swapit(&array[i], &array[j]);
/* After this, array[i] can never change - so we can save it as a found pivot-index */
/* Max-search on elements by telling which is closest to pivotval by abs difference! */
if(array[i] > leftmax) {
pivoti = i;
leftmax = array[i];
}
}
}
/* Must check if above loop found elem at all - because its guessing */
if(i != (low - 1)) {
/* swap the pivot element into its place */
swapit(&array[i], &array[pivoti]);
}
/* return the partition point: index of pivot element */
return i;
}
#endif /* MY_QUICKSORT_H */