magyarsort/ypsu.cpp
2024-04-11 16:59:09 +02:00

741 lines
19 KiB
C++

#include <algorithm>
#include <cassert>
#include <chrono>
#include <climits>
#include <cstdint>
#include <cstdio>
#include <cstring>
#include <functional>
#include <map>
#include <set>
#include <string>
#include <vector>
#include <numeric>
#include <sys/mman.h> // mlock & munlock
#include "ska_sort.hpp"
#include "gptsort.h"
#include "thiersort.h"
// #define MAGYAR_SORT_DEFAULT_REUSE
#include "magyarsort.h"
#include "space_partitioning_sort/spsort.h"
std::map<std::string, double> results;
std::map<std::string, double> worst;
void measure(const std::string &inputtype, const std::string &name,
std::function<void()> f) {
auto begin = std::chrono::high_resolution_clock::now();
f();
auto dur = std::chrono::high_resolution_clock::now() - begin;
double seconds = dur / std::chrono::milliseconds(1) / 1000.0;
results[name] = seconds;
worst[name] = std::max(worst[name], seconds);
}
std::vector<std::string> inputtypes = {
"constant",
"asc",
"desc",
"ascasc",
"ascdesc",
"descasc",
"descdesc",
"rand",
"smallrange",
};
std::vector<uint32_t> geninput(const std::string &type, int n) {
std::vector<uint32_t> v(n);
if (type == "constant") {
int c = rand();
for (int i = 0; i < n; i++) {
v[i] = c;
}
} else if (type == "asc") {
for (int i = 0; i < n; i++) {
v[i] = i;
}
} else if (type == "desc") {
for (int i = 0; i < n; i++) {
v[i] = n - i;
}
} else if (type == "ascasc") {
for (int i = 0; i < n / 2; i++) {
v[i] = i;
v[i + n / 2] = i;
}
} else if (type == "ascdesc") {
for (int i = 0; i < n / 2; i++) {
v[i] = i;
v[i + n / 2] = n - i;
}
} else if (type == "descasc") {
for (int i = 0; i < n / 2; i++) {
v[i] = n - i;
v[i + n / 2] = i;
}
} else if (type == "descdesc") {
for (int i = 0; i < n / 2; i++) {
v[i] = n - i;
v[i + n / 2] = n - i;
}
} else if (type == "smallrange") {
int c = rand() / 2;
for (int i = 0; i < n; i++) {
v[i] = c + rand() % 100;
}
} else if (type == "rand") {
for (int i = 0; i < n; i++) {
v[i] = rand();
}
}
return v;
}
void twopass(uint32_t *a, int n) {
assert(n * int64_t(sizeof(a[0])) <= INT_MAX);
// alloc helper buffers.
int sz = n * sizeof(a[0]);
std::vector<int> bucketdata(1 << 16);
uint32_t *buf = (uint32_t *)malloc(sz);
assert(buf != NULL);
// pass 1: sort by lower 16 bits.
for (int i = 0; i < n; i++) bucketdata[a[i] & 0xffff]++;
int offset = 0;
for (int i = 0; i < 1 << 16; i++) {
int d = bucketdata[i];
bucketdata[i] = offset;
offset += d;
}
for (int i = 0; i < n; i++) buf[bucketdata[a[i] & 0xffff]++] = a[i];
// pass 2: sort by upper 16 bits.
memset(&bucketdata[0], 0, bucketdata.size() * sizeof(bucketdata[0]));
for (int i = 0; i < n; i++) bucketdata[buf[i] >> 16]++;
offset = 0;
for (int i = 0; i < 1 << 16; i++) {
int d = bucketdata[i];
bucketdata[i] = offset;
offset += d;
}
for (int i = 0; i < n; i++) a[bucketdata[buf[i] >> 16]++] = buf[i];
free(buf);
}
// TODO: zssort (quicksort jobbítás)
// mormord — Today at 2:27 AM
// 1 2 2 2 3
//
// 0 1 2 3 4
// |1|2 2 3 2
// 1|2|2 3 2
// 1|3|2 2 2
// 1|2|2 2 3
// 1|2|2 2 3
// 1 2|2|2 3
// ^
// Pivot
//
// állítás: pivottól balra helyükön vannak az elemek rendezettségük szerint
//
// Kezdés Indexek = Prefix összeg - 1 (utolsó helyek az elemeknek)
//
// Ha pivot új helyének meghatározot index > pivot_index (|.| helye)
// swap
// --index
// különben
// ++pivot_index
static inline uint32_t morgrab(uint32_t elem, uint32_t j) noexcept {
return (elem >> (8 * j)) & 0xff;
}
static inline void mormord_sort_impl(uint32_t *a, int n, int j) noexcept {
/* Preparation */
uint32_t radics[256] = {0};
uint32_t radics2[256] = {0};
/* [from, to) index: only where prefix sums change - usually nonfull */
uint32_t real_radics[256 * 2] = {0};
/* Occurence counting O(n) */
/* We can go both down and upwards here to increase ILP or even do SSE2 */
uint32_t k1 = 0;
uint32_t k2 = (n - 1);
for(k1 = 0; k1 < k2; ++k1, --k2) {
++radics[morgrab(a[k1], j)];
++radics2[morgrab(a[k2], j)];
}
if(k1 == k2) {
++radics[morgrab(a[k1], j)];
}
for(int i = 0; i < 256; ++i) {
radics[i] += radics2[i];
}
/* Prefix sum + real radics calc O(256) */
/* Radics: */
/* fr: {10, 20, 10, 0, 5, 15,...} */
/* to: {10, 30, 40, 40, 45, 60,..} */
/* Real radics: */
/* to: {[0, 10], [10, 30], [30, 40], [40, 45], [45, 60]} */
/* 0. 1. 2. 4. 5. */
/* (because radix value 3 is not found in input) */
uint32_t prev = 0;
uint32_t reali = 0;
for(int i = 0; i < 256; ++i) {
if(radics[i] != 0) {
radics[i] += prev;
real_radics[reali] = prev;
real_radics[reali + 1] = radics[i];
prev = radics[i];
reali += 2;
} else {
radics[i] += prev;
prev = radics[i];
}
}
// Inplace swap
uint32_t pivoti = 0;
while(pivoti < n) {
uint32_t radixval = morgrab(a[pivoti], j);
uint32_t targeti = radics[radixval] - 1;
if(targeti > pivoti) {
// swap
uint32_t tmp = a[pivoti];
a[pivoti] = a[targeti];
a[targeti] = tmp;
// dec index
--radics[radixval];
} else {
// progress pivot
++pivoti;
}
}
// Ends recursion
if(j == 0) return;
// Recursion
for(int i = 0; i < reali; i += 2) {
/* inclusive */
uint32_t from = real_radics[i];
/* non-inclusive */
uint32_t to = real_radics[i + 1];
if(from < to) { // TODO: check if this "if" is needed!
mormord_sort_impl(&a[from], (to - (from)), j - 1);
}
}
}
static inline void mormord_sort(uint32_t *a, int n) noexcept {
assert(n * uint32_t(sizeof(a[0])) <= INT_MAX);
mormord_sort_impl(a, n, 3);
}
void fourpass(uint32_t *a, int n) {
assert(n * int64_t(sizeof(a[0])) <= INT_MAX);
// alloc helper buffers.
int sz = n * sizeof(a[0]);
std::vector<int> bucketdata(1 << 8);
uint32_t *buf = (uint32_t *)malloc(sz);
assert(buf != NULL);
uint32_t *src = a, *dst = buf;
uintptr_t swapmask = (uintptr_t)a ^ (uintptr_t)buf;
for (int shift = 0; shift < 32; shift += 8) {
memset(&bucketdata[0], 0, bucketdata.size() * sizeof(bucketdata[0]));
for (int i = 0; i < n; i++) bucketdata[src[i] >> shift & 0xff]++;
int offset = 0;
for (int i = 0; i < 1 << 8; i++) {
int d = bucketdata[i];
bucketdata[i] = offset;
offset += d;
}
for (int i = 0; i < n; i++) {
dst[bucketdata[src[i] >> shift & 0xff]++] = src[i];
}
src = (uint32_t *)((uintptr_t)src ^ swapmask);
dst = (uint32_t *)((uintptr_t)dst ^ swapmask);
}
free(buf);
}
/** Only werks für das fourpassu! */
void my_memset(int *v) {
memset(v, 0, (1 << 8) * sizeof(int));
}
// hand-unrolled fourpass.
void fourpassu(uint32_t *a, int n) {
assert(n * int64_t(sizeof(a[0])) <= INT_MAX);
// alloc helper buffers.
int sz = n * sizeof(a[0]);
static thread_local int bucketdata[1 << 8];
my_memset(bucketdata);
uint32_t *buf = (uint32_t *)malloc(sz);
assert(buf != NULL);
// pass 1: sort by lower 8 bits.
#pragma GCC unroll 32
for (int i = 0; i < n; i++) bucketdata[a[i] & 0xff]++;
int offset = 0;
#pragma GCC unroll 8
for (int i = 0; i < 1 << 8; i++) {
int d = bucketdata[i];
bucketdata[i] = offset;
offset += d;
}
for (int i = 0; i < n; i++) buf[bucketdata[a[i] & 0xff]++] = a[i];
// pass 2: sort by 2nd 8 bits.
my_memset(bucketdata);
#pragma GCC unroll 32
for (int i = 0; i < n; i++) bucketdata[buf[i] >> 8 & 0xff]++;
offset = 0;
#pragma GCC unroll 8
for (int i = 0; i < 1 << 8; i++) {
int d = bucketdata[i];
bucketdata[i] = offset;
offset += d;
}
#pragma GCC unroll 64
for (int i = 0; i < n; i++) a[bucketdata[buf[i] >> 8 & 0xff]++] = buf[i];
// pass 3: sort by 3rd 8 bits.
my_memset(bucketdata);
#pragma GCC unroll 32
for (int i = 0; i < n; i++) bucketdata[a[i] >> 16 & 0xff]++;
offset = 0;
#pragma GCC unroll 8
for (int i = 0; i < 1 << 8; i++) {
int d = bucketdata[i];
bucketdata[i] = offset;
offset += d;
}
#pragma GCC unroll 64
for (int i = 0; i < n; i++) buf[bucketdata[a[i] >> 16 & 0xff]++] = a[i];
// pass 4: sort by 4th 8 bits.
my_memset(bucketdata);
#pragma GCC unroll 32
for (int i = 0; i < n; i++) bucketdata[buf[i] >> 24 & 0xff]++;
offset = 0;
#pragma GCC unroll 8
for (int i = 0; i < 1 << 8; i++) {
int d = bucketdata[i];
bucketdata[i] = offset;
offset += d;
}
#pragma GCC unroll 32
for (int i = 0; i < n; i++) a[bucketdata[buf[i] >> 24 & 0xff]++] = buf[i];
free(buf);
}
static inline uint32_t byterotate(uint32_t x) { return (x >> 8) | (x << 24); }
void fourrots(uint32_t *arr, int n) {
assert(n * int64_t(sizeof(arr[0])) <= INT_MAX);
assert(n % 4 == 0);
// alloc helper buffers.
int sz = n * sizeof(arr[0]);
std::vector<int> bucketdata(1 << 8);
int *btd = &bucketdata[0];
uint32_t *buf = (uint32_t *)malloc(sz);
assert(buf != NULL);
uint32_t *src = arr, *dst = buf;
uintptr_t swapmask = (uintptr_t)arr ^ (uintptr_t)buf;
uint32_t a, b, c, d;
uint32_t abt, bbt, cbt, dbt;
for (int shift = 0; shift < 32; shift += 8) {
memset(btd, 0, bucketdata.size() * sizeof(bucketdata[0]));
for (int i = 0; i < n; i += 4) {
a = src[i];
b = src[i + 1];
c = src[i + 2];
d = src[i + 3];
abt = a & 0xff;
bbt = b & 0xff;
cbt = c & 0xff;
dbt = d & 0xff;
btd[abt]++;
btd[bbt]++;
btd[cbt]++;
btd[dbt]++;
}
int offset = 0;
for (int i = 0; i < 1 << 8; i++) {
int d = bucketdata[i];
bucketdata[i] = offset;
offset += d;
}
for (int i = 0; i < n; i += 4) {
a = src[i];
b = src[i + 1];
c = src[i + 2];
d = src[i + 3];
abt = a & 0xff;
bbt = b & 0xff;
cbt = c & 0xff;
dbt = d & 0xff;
dst[btd[abt]++] = byterotate(a);
dst[btd[bbt]++] = byterotate(b);
dst[btd[cbt]++] = byterotate(c);
dst[btd[dbt]++] = byterotate(d);
}
src = (uint32_t *)((uintptr_t)src ^ swapmask);
dst = (uint32_t *)((uintptr_t)dst ^ swapmask);
}
free(buf);
}
// frewr - four rewrites.
void frewr(uint32_t *arr, int n) {
uint32_t *tmpbuf = (uint32_t *)malloc(n * 4);
mlock(tmpbuf, n * 4);
int btoffsets[4][256] = {};
#pragma GCC unroll 64
for (int i = n - 1; i >= 0; i--) {
uint32_t a = arr[i];
btoffsets[3][a & 0xff]++;
btoffsets[2][a >> 8 & 0xff]++;
btoffsets[1][a >> 16 & 0xff]++;
btoffsets[0][a >> 24 & 0xff]++;
}
int btend[4] = {n - 1, n - 1, n - 1, n - 1};
#pragma GCC unroll 16
for (int i = 255; i >= 0; i--) {
#pragma GCC unroll 4
for (int pass = 3; pass >= 0; pass--) {
int nbtend = btend[pass] - btoffsets[pass][i];
btoffsets[pass][i] = btend[pass];
btend[pass] = nbtend;
}
}
uint32_t *src = arr, *dst = tmpbuf;
#pragma GCC unroll 4
for (int pass = 3; pass >= 0; pass--) {
int *off = btoffsets[pass];
#pragma GCC unroll 64
for (int i = n - 1; i >= 0; i--) {
uint32_t v = src[i];
dst[off[v & 0xff]--] = v >> 8 | v << 24;
__builtin_prefetch(&dst[off[v & 0xff] - 2]);
}
uint32_t *tmp = src;
src = dst;
dst = tmp;
}
munlock(tmpbuf, n * 4);
free(tmpbuf);
}
void vsort(uint32_t *a, int n) {
thread_local std::vector<uint32_t> bts[256];
#pragma GCC unroll 4
for (int shift = 0; shift < 32; shift += 8) {
#pragma GCC unroll 64
for (int i = 0; i < n; i++) bts[a[i] >> shift & 0xff].push_back(a[i]);
#pragma GCC unroll 64
for (int bt = 0, k = 0; bt < 256; bt++) {
memcpy(a + k, &bts[bt][0], bts[bt].size() * sizeof(a[0]));
k += bts[bt].size();
bts[bt].clear();
}
}
}
void pagedsort(uint32_t *a, int n) {
enum { pagesize = 1024 };
int pagecount = (n + pagesize - 1) / pagesize + 512;
uint32_t *pd = (uint32_t *)malloc(pagecount * pagesize * sizeof(a[0]));
std::vector<int> freelist(pagecount);
std::vector<int> next(pagecount);
std::iota(std::begin(freelist), std::end(freelist), 0);
struct bucket {
int len;
int headpage, lastpage;
};
bucket bts[512];
// initial scatter.
for (int bt = 0; bt < 256; bt++) {
int p = freelist.back();
freelist.pop_back();
bts[bt] = {0, p, p};
}
for (int i = 0; i < n; i++) {
bucket *bt = &bts[a[i] & 0xff];
pd[bt->lastpage * pagesize + bt->len++ % pagesize] = a[i];
if (bt->len % pagesize == 0) {
int p = freelist.back();
freelist.pop_back();
next[bt->lastpage] = p;
bt->lastpage = p;
}
}
// intermediate level scatters.
int ibase = 0, obase = 256;
for (int shift = 8; shift < 32; shift += 8) {
for (int bt = 0; bt < 256; bt++) {
int p = freelist.back();
freelist.pop_back();
bts[obase + bt] = {0, p, p};
}
for (int ibti = 0; ibti < 256; ibti++) {
struct bucket *ibt = &bts[ibase + ibti];
int page = ibt->headpage;
for (int i = 0; i < ibt->len; i++) {
uint32_t v = pd[page * pagesize + i % pagesize];
struct bucket *obt = &bts[obase + (v >> shift & 0xff)];
pd[obt->lastpage * pagesize + obt->len++ % pagesize] = v;
if (obt->len % pagesize == 0) {
int p = freelist.back();
freelist.pop_back();
next[obt->lastpage] = p;
obt->lastpage = p;
}
if (i % pagesize == pagesize - 1) {
freelist.push_back(page);
page = next[page];
}
}
freelist.push_back(ibt->lastpage);
}
ibase = 256 - ibase;
obase = 256 - obase;
}
// the final gather.
int k = 0;
for (int ibti = 0; ibti < 256; ibti++) {
struct bucket *ibt = &bts[ibase + ibti];
int page = ibt->headpage;
for (int i = 0; i < ibt->len; i++) {
a[k++] = pd[page * pagesize + i % pagesize];
if (i % pagesize == pagesize - 1) {
page = next[page];
}
}
}
free(pd);
}
// I measured this being faster than std::sort which is giga-lol wtf...
void thier_quicksort(uint32_t *arr, int n) {
// Prepare: O(n)
tselem *tarr = thiersort_prepare_array(
arr,
// union tskey (askey)(void *elem),
[] (void *elem) {
tskey k;
k.u = *((uint32_t *)elem);
return k;
},
4, // elemsize,
n, // length,
malloc);
/*
for(uint32_t i = 0; i < n; ++i) {
printf("In: %d @%d\n", tarr[i].key.u, tarr[i].i);
}
*/
// Quicksort by me
ts_quicksort_inplace(
tarr,
0, // from
n, // to
ts_lt_uint,
nullptr);
/*
for(uint32_t i = 0; i < n; ++i) {
printf("Out: %d @%d\n", tarr[i].key.u, tarr[i].i);
}
*/
// Apply: O(n)
uint32_t tmp[1]; // needed for elem swaps
thiersort_apply(
tarr,
arr,
n,
4, // elemsize
tmp,
free);
}
void thiersort_uintkey8(uint32_t *arr, int n) {
// Prepare: O(n)
tselem *tarr = thiersort_prepare_array(
arr,
// union tskey (askey)(void *elem),
[] (void *elem) {
tskey k;
k.u = *((uint32_t *)elem);
return k;
},
4, // elemsize,
n, // length,
malloc);
/*
for(uint32_t i = 0; i < n; ++i) {
printf("In: %d @%d\n", tarr[i].key.u, tarr[i].i);
}
*/
// Sort: O(n*loglogn on amortized on random input):
thiersort8_uintkey(
tarr,
n,
malloc,
free);
/*
for(uint32_t i = 0; i < n; ++i) {
printf("Out: %d @%d\n", tarr[i].key.u, tarr[i].i);
}
*/
// Apply: O(n)
uint32_t tmp[1]; // needed for elem swaps
thiersort_apply(
tarr,
arr,
n,
4, // elemsize
tmp,
free);
}
// to measure / profile a single variant
void measure_single(int n) {
for (auto inputtype : inputtypes) {
printf("%10s", inputtype.c_str());
fflush(stdout);
std::vector<uint32_t> v(n);
v = geninput(inputtype, n);
//measure(inputtype, "sp", [&] { spsort(&v[0], v.size()); });
measure(inputtype, "magyar", [&] { MagyarSort::sort<uint32_t>(&v[0], v.size()); });
for (auto r : results) printf("%9.3fs", r.second);
puts("");
}
puts("");
printf("%10s", "worst");
for (auto w : worst) printf("%9.3fs", w.second);
puts("");
printf("%10s", "");
for (auto w : worst) printf("%10s", w.first.c_str());
puts("");
}
int main(void) {
//int n = 100000000;
int n = 10000000;
//int n = 1000000;
//int n = 100000;
//int n = 10000;
//int n = 1000;
//int n = 100;
//int n = 10;
printf("Sorting %d elements:\n\n", n);
// Uncomment this for profiling and alg!
//measure_single(n);
//return 0;
for (auto inputtype : inputtypes) {
printf("%10s", inputtype.c_str());
// fflush(stdout); // XXX: FIXME?
std::vector<uint32_t> v(n), w(n), expected(n);
v = geninput(inputtype, n);
measure(inputtype, "copy", [&] { w = v; });
w = v;
measure(inputtype, "std", [&] { std::sort(std::begin(w), std::end(w)); });
expected = w;
w = v;
measure(inputtype, "ska", [&] { ska_sort(std::begin(w), std::end(w)); });
w = v;
measure(inputtype, "ska_copy", [&] {
std::vector<uint32_t> buf(w.size());
if (ska_sort_copy(std::begin(w), std::end(w), std::begin(buf))) {
w.swap(buf);
}
});
w = v;
measure(inputtype, "magyar", [&] { MagyarSort::sort<uint32_t>(&w[0], w.size()); });
assert(w == expected);
w = v;
measure(inputtype, "mormord", [&] { mormord_sort(&w[0], w.size()); });
assert(w == expected);
/*
w = v;
measure(inputtype, "2pass", [&] { twopass(&w[0], w.size()); });
assert(w == expected);
w = v;
measure(inputtype, "4pass", [&] { fourpass(&w[0], w.size()); });
assert(w == expected);
w = v;
measure(inputtype, "psort", [&] { pagedsort(&w[0], w.size()); });
assert(w == expected);
w = v;
measure(inputtype, "4pasu", [&] { fourpassu(&w[0], w.size()); });
assert(w == expected);
w = v;
measure(inputtype, "4rot", [&] { fourrots(&w[0], w.size()); });
assert(w == expected);
w = v;
measure(inputtype, "sp", [&] { spsort(&w[0], w.size()); });
assert(w == expected);*/
w = v;
measure(inputtype, "gptbuck", [&] { gpt_bucket_sort(&w[0], w.size()); });
assert(w == expected);
/*
w = v;
measure(inputtype, "magbuck", [&] { magyar_bucket_sort(&w[0], w.size()); });
assert(w == expected);
w = v;
measure(inputtype, "magbuck2", [&] { magyar_bucket_sort2(&w[0], w.size()); });
assert(w == expected);
w = v;
w = {10, 20, 20};
measure(inputtype, "qsmine", [&] { thier_quicksort(&w[0], w.size()); });
if(w != expected) {
for(uint32_t i = 0; i < n; ++i) {
// assert(w[i] == expected[i]);
if(w[i] != expected[i]) {
fprintf(stderr, "Difference at %d: %d != %d\n", i, w[i], expected[i]);
}
}
}
assert(w == expected);
w = v;
measure(inputtype, "thier", [&] { thiersort_uintkey8(&w[0], w.size()); });
if(w != expected) {
for(uint32_t i = 0; i < n; ++i) {
// assert(w[i] == expected[i]);
if(w[i] != expected[i]) {
fprintf(stderr, "Difference at %d: %d != %d\n", i, w[i], expected[i]);
}
}
}
assert(w == expected);
*/
/*
w = v;
measure(inputtype, "frewr", [&] { frewr(&w[0], w.size()); });
assert(w == expected);
w = v;
measure(inputtype, "vsort", [&] { vsort(&w[0], w.size()); });
assert(w == expected);
*/
for (auto r : results) printf("%9.3fs", r.second);
puts("");
}
puts("");
printf("%10s", "worst");
for (auto w : worst) printf("%9.3fs", w.second);
puts("");
printf("%10s", "");
for (auto w : worst) printf("%10s", w.first.c_str());
puts("");
return 0;
}