#ifndef THREE_PASS_XB_H #define THREE_PASS_XB_H /* Basically like threepass.h but but fewer bits - only for thiersort3! */ /* How the 28-30 bits gets separated? This is chosen because I saw that: */ /* - in float trickery I saw at around 4 billion the buckets change around 200 million */ /* - Which is smaller than 1/2 or 1/4 or 1/8 or 1/16 of it because 16*200 mil = 3.2 bill 28 bit is needed */ /* - This means those bits in numbers DO get used when we are running as internal sort of thier3 */ /* - But the numbers high bits (29..32th bits) stay the same inside each bucket so we spare it! */ /* - If you know your data does not have all the range of 32 bits you can #define these by #define CUSTOM_TPBX_BITS */ /* Only define these to be smaller than these in case your input data shows you can - never change orders or make bigger! */ #ifndef CUSTOM_TPBX_BITS #define TPBX1 10 // top #define TPBX2 9 // mid #define TPBX3 9 // bottom #endif /* CUSTOM_TPBX_BITS */ #ifndef TPBX_NO_DEF_WCACHE #define TPBX_WCACHE 2 /* depth of the write-cache - I let the user */ #endif /* TPBX_NO_DEF_WCACHE */ #ifdef __cplusplus #define TPBX_NOEXCEPT noexcept #define TPBX_CONSTEXPR constexpr #else #define TPBX_NOEXCEPT #define TPBX_CONSTEXPR const #endif /* __cplusplus */ static inline TPBX_CONSTEXPR uint32_t min3u32_xb(uint32_t a, uint32_t b, uint32_t c) TPBX_NOEXCEPT { return (a <= b) ? ((a <= c) ? a : c) : ((b <= c) ? b : c); } static inline TPBX_CONSTEXPR uint32_t max3u32_xb(uint32_t a, uint32_t b, uint32_t c) TPBX_NOEXCEPT { return (a >= b) ? ((a >= c) ? a : c) : ((b >= c) ? b : c); } /** Copy the elements to their respective radics-place (f->t copy) bit should be the TPBX1,2,3 */ static inline void copy_radics_tpxp( uint32_t *f, uint32_t *t, uint32_t *bucket, uint32_t shr, uint32_t mask, uint32_t n, uint32_t bit) { #ifndef TPBX_WCACHE // right-to-left to ensure already sorted digits order we keep for iterations #pragma GCC unroll 48 for(uint32_t i = n; i > 0; --i) { // Prefetch caches //__builtin_prefetch(&a[i-8]); // Get num and its new offset / location uint32_t num = f[i - 1]; uint32_t bkeyni = (num >> shr) & mask; uint32_t offset = --bucket[bkeyni]; // Add to the proper target location t[offset] = num; } #else int stride = (1 << bit); static __thread uint32_t write_cache[1024 * TPBX_WCACHE]; static __thread uint8_t write_qc[1024]; for(uint32_t i = 0; i < 1024; ++i) { write_qc[i] = 0; } /* right-to-left to ensure already sorted digits order we keep for iterations */ #pragma GCC unroll 4 for(uint32_t i = n; i > 0; --i) { /* calculate which bucket this would belong and where the queue is */ uint32_t num = f[i - 1]; uint32_t bkeyni = (num >> shr) & mask; uint8_t qc = write_qc[bkeyni]; if(qc < TPBX_WCACHE) { /* Cache is not full yet */ write_cache[bkeyni + stride * qc] = num; ++write_qc[bkeyni]; } else { /* Cache is full, make a real writeout - all from this queue */ /* We also directly move the current element too - micro optimized */ uint32_t offset = (bucket[bkeyni] -= (TPBX_WCACHE + 1)); t[offset++] = num; /* Copy from the cache - order counts here because keeping opposites! */ for(uint32_t j = 0; j < TPBX_WCACHE; ++j) { uint32_t cached = write_cache[bkeyni + stride * (TPBX_WCACHE - 1 - j)]; t[offset + j] = cached; } /* Reset this queue */ write_qc[bkeyni] = 0; } } /* Write out any data remaining in the write cache */ for(uint32_t bkeyni = 0; bkeyni < stride; ++bkeyni) { uint32_t qc = write_qc[bkeyni]; uint32_t offset = (bucket[bkeyni] -= qc); if(qc > 0) for(uint32_t j = 0; j < qc; ++j) { uint32_t cached = write_cache[bkeyni + stride * (qc - 1 - j)]; t[offset + j] = cached; } } #endif /* TPBX_WCACHE */ } /* I pulled these out only for better flame graph support */ /** Count occurences (can count together with good ILP) */ static inline void count_occurences_tpxp(uint32_t *bucket1, uint32_t *bucket2, uint32_t *bucket3, const uint32_t shr1, const uint32_t shr2, const uint32_t shr3, const uint32_t mask1, const uint32_t mask2, const uint32_t mask3, uint32_t *a, uint32_t n) TPBX_NOEXCEPT { #pragma GCC unroll 64 for(uint32_t i = 0; i < n; ++i) { ++bucket1[(a[i] >> shr1) & mask1]; ++bucket2[(a[i] >> shr2) & mask2]; ++bucket3[(a[i] >> shr3) & mask3]; } } /** * Simple three-pass (ok: 3 + 1) bottom-up internal radix sort writter for thiersort3 * * @param a The array to sort - will be changed too! * @param buf Result array with the same size - result will be here * @param n The number of elements */ static inline void threepass_xb(uint32_t *a, uint32_t *buf, uint32_t n) TPBX_NOEXCEPT { assert(buf != NULL); TPBX_CONSTEXPR uint32_t shr1 = TPBX3 + TPBX2; TPBX_CONSTEXPR uint32_t shr2 = TPBX3; TPBX_CONSTEXPR uint32_t shr3 = 0; TPBX_CONSTEXPR uint32_t mask1 = (1 << TPBX1) - 1; TPBX_CONSTEXPR uint32_t mask2 = (1 << TPBX2) - 1; TPBX_CONSTEXPR uint32_t mask3 = (1 << TPBX3) - 1; /* helper buffers. */ uint32_t sz = n * sizeof(a[0]); static __thread uint32_t bucket1[1 << TPBX1]; memset(bucket1, 0, (1 << TPBX1) * sizeof(uint32_t)); static __thread uint32_t bucket2[1 << TPBX2]; memset(bucket2, 0, (1 << TPBX2) * sizeof(uint32_t)); static __thread uint32_t bucket3[1 << TPBX3]; memset(bucket3, 0, (1 << TPBX3) * sizeof(uint32_t)); count_occurences_tpxp(bucket1, bucket2, bucket3, shr1, shr2, shr3, mask1, mask2, mask3, a, n); /* Count prefix sums - try as much ILP as possible because bigger arrays than usual! */ uint32_t prev1 = 0; uint32_t prev2 = 0; uint32_t prev3 = 0; uint32_t common = min3u32_xb( (1 << TPBX1), (1 << TPBX2), (1 << TPBX3) ); uint32_t i = 0; #pragma GCC unroll 8 for (; i < common; ++i) { bucket1[i] += prev1; prev1 = bucket1[i]; bucket2[i] += prev2; prev2 = bucket2[i]; bucket3[i] += prev3; prev3 = bucket3[i]; } /* Do remaining 1 */ for (uint32_t j = i; j < (1 << TPBX1); ++j) { bucket1[j] += prev1; prev1 = bucket1[j]; } /* Do remaining 2 */ for (uint32_t j = i; j< (1 << TPBX2); ++j) { bucket2[j] += prev2; prev2 = bucket2[j]; } /* Do remaining 3 */ for (uint32_t j = i; j < (1 << TPBX3); ++j) { bucket3[j] += prev3; prev3 = bucket3[j]; } // Bottom digit a->buf copy_radics_tpxp(a, buf, bucket3, shr3, mask3, n, TPBX3); // Mid digit buf->a copy_radics_tpxp(buf, a, bucket2, shr2, mask2, n, TPBX2); // Top digit a->buf copy_radics_tpxp(a, buf, bucket1, shr1, mask1, n, TPBX1); } #endif /* THREE_PASS_XB_H */