#ifndef THREE_PASS_XB_H #define THREE_PASS_XB_H /* Basically like threepass.h but but fewer bits - only for thiersort3! */ /* How the 28-30 bits gets separated? This is chosen because I saw that: */ /* - in float trickery I saw at around 4 billion the buckets change around 200 million */ /* - Which is smaller than 1/2 or 1/4 or 1/8 or 1/16 of it because 16*200 mil = 3.2 bill 28 bit is needed */ /* - This means those bits in numbers DO get used when we are running as internal sort of thier3 */ /* - But the numbers high bits (29..32th bits) stay the same inside each bucket so we spare it! */ /* - If you know your data does not have all the range of 32 bits you can #define these by #define CUSTOM_TPBX_BITS */ #ifndef CUSTOM_TPBX_BITS #define TPBX1 10 // top #define TPBX2 9 // mid #define TPBX3 9 // bottom #endif /* CUSTOM_TPBX_BITS */ static inline constexpr uint32_t min3u32_xb(uint32_t a, uint32_t b, uint32_t c) noexcept { return (a <= b) ? ((a <= c) ? a : c) : ((b <= c) ? b : c); } /** * Simple three-pass (ok: 3 + 1) bottom-up internal radix sort writter for thiersort3 * * @param a The array to sort - will be changed too! * @param buf Result array with the same size - result will be here * @param n The number of elements */ static inline void threepass_xb(uint32_t *a, uint32_t *buf, int n) noexcept { assert(buf != NULL); constexpr int shr1 = TPBX3 + TPBX2; constexpr int shr2 = TPBX3; constexpr int shr3 = 0; constexpr int mask1 = (1 << TPBX1) - 1; constexpr int mask2 = (1 << TPBX2) - 1; constexpr int mask3 = (1 << TPBX3) - 1; /* helper buffers. */ int sz = n * sizeof(a[0]); static thread_local uint32_t bucket1[1 << TPBX1]; memset(bucket1, 0, (1 << TPBX1) * sizeof(uint32_t)); static thread_local uint32_t bucket2[1 << TPBX2]; memset(bucket2, 0, (1 << TPBX2) * sizeof(uint32_t)); static thread_local uint32_t bucket3[1 << TPBX3]; memset(bucket3, 0, (1 << TPBX3) * sizeof(uint32_t)); /* Count occurences (can count together with good ILP) */ #pragma GCC unroll 64 for(uint32_t i = 0; i < n; ++i) { ++bucket1[(a[i] >> shr1) & mask1]; ++bucket2[(a[i] >> shr2) & mask2]; ++bucket3[(a[i] >> shr3) & mask3]; } /* Count prefix sums - try as much ILP as possible because bigger arrays than usual! */ int prev1 = -1; int prev2 = -1; int prev3 = -1; uint32_t common = min3u32_xb( (1 << TPBX1), (1 << TPBX2), (1 << TPBX3) ); int i = 0; #pragma GCC unroll 8 for (; i < common; ++i) { bucket1[i] += prev1; prev1 = bucket1[i]; bucket2[i] += prev2; prev2 = bucket2[i]; bucket3[i] += prev3; prev3 = bucket3[i]; } /* Do remaining 1 */ for (int j = i; j < (1 << TPBX1); ++j) { bucket1[j] += prev1; prev1 = bucket1[j]; } /* Do remaining 2 */ for (int j = i; j< (1 << TPBX2); ++j) { bucket2[j] += prev2; prev2 = bucket2[j]; } /* Do remaining 3 */ for (int j = i; j < (1 << TPBX3); ++j) { bucket3[j] += prev3; prev3 = bucket3[j]; } /* Move elements (the 3 pass): This utilizes frewr trick to overwrite keys (elements) by ror-ing them */ /* This rewrites the key into its rotated state to save some pipeline stalls. (3 rotates happen and in the end its ok) */ /* right-to-left to ensure already sorted digits order we keep for iterations */ /* Bottom digit a->buf */ #pragma GCC unroll 80 for(uint32_t i = n; i > 0; --i) { uint32_t num = a[i - 1]; /* save rotated into the masked, bucketed loc */ buf[bucket3[num & mask3]--] = (num >> TPBX3) | (num << (32 - TPBX3)); //__builtin_prefetch(&buf[bucket3[num & mask3] - 2]); } /* Mid digit buf->a */ #pragma GCC unroll 80 for(uint32_t i = n; i > 0; --i) { uint32_t num = buf[i - 1]; /* save rotated into the masked, bucketed loc */ a[bucket2[num & mask2]--] = (num >> TPBX2) | (num << (32 - TPBX2)); //__builtin_prefetch(&a[bucket2[num & mask2] - 2]); } /* Top digit a->buf */ #pragma GCC unroll 80 for(uint32_t i = n; i > 0; --i) { uint32_t num = a[i - 1]; /* Reconstruct the original key in this element by where its stuff is stored */ constexpr int rot = TPBX1 + (32 - TPBX1 - TPBX2 - TPBX3); /* save rotated into the masked, bucketed loc */ buf[bucket1[num & mask1]--] = (num >> rot) | (num << (32 - rot)); //__builtin_prefetch(&buf[bucket1[num & mask1] - 2]); } } #endif /* THREE_PASS_XB_H */