#ifndef THREE_PASS_XB_H #define THREE_PASS_XB_H /* Basically like threepass.h but but fewer bits - only for thiersort3! */ /* How the 28-30 bits gets separated? This is chosen because I saw that: */ /* - in float trickery I saw at around 4 billion the buckets change around 200 million */ /* - Which is smaller than 1/2 or 1/4 or 1/8 or 1/16 of it because 16*200 mil = 3.2 bill 28 bit is needed */ /* - This means those bits in numbers DO get used when we are running as internal sort of thier3 */ /* - But the numbers high bits (29..32th bits) stay the same inside each bucket so we spare it! */ /* - If you know your data does not have all the range of 32 bits you can #define these by #define CUSTOM_TPBX_BITS */ #ifndef CUSTOM_TPBX_BITS #define TPBX1 10 // top #define TPBX2 9 // mid #define TPBX3 9 // bottom #endif /* CUSTOM_TPBX_BITS */ static inline constexpr uint32_t min3u32_xb(uint32_t a, uint32_t b, uint32_t c) noexcept { return (a <= b) ? ((a <= c) ? a : c) : ((b <= c) ? b : c); } static inline void tpxb_process_element(uint32_t num, uint32_t* arr, uint32_t* bucket, uint32_t shr, uint32_t mask) { auto bkeyni = (num >> shr) & mask; auto offset = --bucket[bkeyni]; arr[offset] = num; } /** * Simple three-pass (ok: 3 + 1) bottom-up internal radix sort writter for thiersort3 * * @param a The array to sort - will be changed too! * @param buf Result array with the same size - result will be here * @param n The number of elements */ static inline void threepass_xb(uint32_t *a, uint32_t *buf, int n) noexcept { assert(buf != NULL); constexpr int shr1 = TPBX3 + TPBX2; constexpr int shr2 = TPBX3; constexpr int shr3 = 0; constexpr int mask1 = (1 << TPBX1) - 1; constexpr int mask2 = (1 << TPBX2) - 1; constexpr int mask3 = (1 << TPBX3) - 1; /* helper buffers. */ int sz = n * sizeof(a[0]); static thread_local uint32_t bucket1[1 << TPBX1]; memset(bucket1, 0, (1 << TPBX1) * sizeof(uint32_t)); static thread_local uint32_t bucket2[1 << TPBX2]; memset(bucket2, 0, (1 << TPBX2) * sizeof(uint32_t)); static thread_local uint32_t bucket3[1 << TPBX3]; memset(bucket3, 0, (1 << TPBX3) * sizeof(uint32_t)); /* Count occurences (can count together with good ILP) */ #pragma GCC unroll 64 for(uint32_t i = 0; i < n; ++i) { ++bucket1[(a[i] >> shr1) & mask1]; ++bucket2[(a[i] >> shr2) & mask2]; ++bucket3[(a[i] >> shr3) & mask3]; } /* Count prefix sums - try as much ILP as possible because bigger arrays than usual! */ uint32_t prev1 = 0; uint32_t prev2 = 0; uint32_t prev3 = 0; uint32_t common = min3u32_xb( (1 << TPBX1), (1 << TPBX2), (1 << TPBX3) ); int i = 0; #pragma GCC unroll 8 for (; i < common; ++i) { bucket1[i] += prev1; prev1 = bucket1[i]; bucket2[i] += prev2; prev2 = bucket2[i]; bucket3[i] += prev3; prev3 = bucket3[i]; } /* Do remaining 1 */ for (int j = i; j < (1 << TPBX1); ++j) { bucket1[j] += prev1; prev1 = bucket1[j]; } /* Do remaining 2 */ for (int j = i; j< (1 << TPBX2); ++j) { bucket2[j] += prev2; prev2 = bucket2[j]; } /* Do remaining 3 */ for (int j = i; j < (1 << TPBX3); ++j) { bucket3[j] += prev3; prev3 = bucket3[j]; } // Bottom digit a->buf // right-to-left to ensure already sorted digits order we keep for iterations #pragma GCC unroll 3 for(i = n; i >= 16; i -= 16) { // Prefetch the NEXT block (not current) at optimal distance if (i > 17) { // Ensure we don't prefetch out of bounds __builtin_prefetch(&a[i - 17]); } if (i > 17*2) { // Ensure we don't prefetch out of bounds __builtin_prefetch(&a[i - 17*2]); } if (i > 17*3) { // Ensure we don't prefetch out of bounds __builtin_prefetch(&a[i - 17*3]); } // Process 16 elements in reverse order auto num15 = a[i - 1]; auto num14 = a[i - 2]; auto num13 = a[i - 3]; auto num12 = a[i - 4]; auto num11 = a[i - 5]; auto num10 = a[i - 6]; auto num9 = a[i - 7]; auto num8 = a[i - 8]; auto num7 = a[i - 9]; auto num6 = a[i - 10]; auto num5 = a[i - 11]; auto num4 = a[i - 12]; auto num3 = a[i - 13]; auto num2 = a[i - 14]; auto num1 = a[i - 15]; auto num0 = a[i - 16]; // Process all 16 elements (your bucket logic here) tpxb_process_element(num15, buf, bucket3, shr3, mask3); tpxb_process_element(num14, buf, bucket3, shr3, mask3); tpxb_process_element(num13, buf, bucket3, shr3, mask3); tpxb_process_element(num12, buf, bucket3, shr3, mask3); tpxb_process_element(num11, buf, bucket3, shr3, mask3); tpxb_process_element(num10, buf, bucket3, shr3, mask3); tpxb_process_element(num9, buf, bucket3, shr3, mask3); tpxb_process_element(num8, buf, bucket3, shr3, mask3); tpxb_process_element(num7, buf, bucket3, shr3, mask3); tpxb_process_element(num6, buf, bucket3, shr3, mask3); tpxb_process_element(num5, buf, bucket3, shr3, mask3); tpxb_process_element(num4, buf, bucket3, shr3, mask3); tpxb_process_element(num3, buf, bucket3, shr3, mask3); tpxb_process_element(num2, buf, bucket3, shr3, mask3); tpxb_process_element(num1, buf, bucket3, shr3, mask3); tpxb_process_element(num0, buf, bucket3, shr3, mask3); } // Handle remainder (less than 16 elements) for(uint32_t j = i; j > 0; --j) { auto num = a[j - 1]; auto bkeyni = (num >> shr3) & mask3; auto offset = --bucket3[bkeyni]; buf[offset] = num; } // Mid digit buf->a // right-to-left to ensure already sorted digits order we keep for iterations #pragma GCC unroll 3 for(i = n; i >= 16; i -= 16) { // Prefetch the NEXT block (not current) at optimal distance if (i > 17) { // Ensure we don't prefetch out of bounds __builtin_prefetch(&buf[i - 17]); } if (i > 17*2) { // Ensure we don't prefetch out of bounds __builtin_prefetch(&buf[i - 17*2]); } if (i > 17*3) { // Ensure we don't prefetch out of bounds __builtin_prefetch(&buf[i - 17*3]); } // Process 16 elements in reverse order auto num15 = buf[i - 1]; auto num14 = buf[i - 2]; auto num13 = buf[i - 3]; auto num12 = buf[i - 4]; auto num11 = buf[i - 5]; auto num10 = buf[i - 6]; auto num9 = buf[i - 7]; auto num8 = buf[i - 8]; auto num7 = buf[i - 9]; auto num6 = buf[i - 10]; auto num5 = buf[i - 11]; auto num4 = buf[i - 12]; auto num3 = buf[i - 13]; auto num2 = buf[i - 14]; auto num1 = buf[i - 15]; auto num0 = buf[i - 16]; // Process all 16 elements (your bucket logic here) tpxb_process_element(num15, a, bucket2, shr2, mask2); tpxb_process_element(num14, a, bucket2, shr2, mask2); tpxb_process_element(num13, a, bucket2, shr2, mask2); tpxb_process_element(num12, a, bucket2, shr2, mask2); tpxb_process_element(num11, a, bucket2, shr2, mask2); tpxb_process_element(num10, a, bucket2, shr2, mask2); tpxb_process_element(num9, a, bucket2, shr2, mask2); tpxb_process_element(num8, a, bucket2, shr2, mask2); tpxb_process_element(num7, a, bucket2, shr2, mask2); tpxb_process_element(num6, a, bucket2, shr2, mask2); tpxb_process_element(num5, a, bucket2, shr2, mask2); tpxb_process_element(num4, a, bucket2, shr2, mask2); tpxb_process_element(num3, a, bucket2, shr2, mask2); tpxb_process_element(num2, a, bucket2, shr2, mask2); tpxb_process_element(num1, a, bucket2, shr2, mask2); tpxb_process_element(num0, a, bucket2, shr2, mask2); } // Handle remainder (less than 16 elements) for(uint32_t j = i; j > 0; --j) { auto num = buf[j - 1]; auto bkeyni = (num >> shr2) & mask2; auto offset = --bucket2[bkeyni]; a[offset] = num; } // Top digit a->buf // right-to-left to ensure already sorted digits order we keep for iterations #pragma GCC unroll 3 for(i = n; i >= 16; i -= 16) { // Prefetch the NEXT block (not current) at optimal distance if (i > 17) { // Ensure we don't prefetch out of bounds __builtin_prefetch(&a[i - 17]); } if (i > 17*2) { // Ensure we don't prefetch out of bounds __builtin_prefetch(&a[i - 17*2]); } if (i > 17*3) { // Ensure we don't prefetch out of bounds __builtin_prefetch(&a[i - 17*3]); } // Process 16 elements in reverse order auto num15 = a[i - 1]; auto num14 = a[i - 2]; auto num13 = a[i - 3]; auto num12 = a[i - 4]; auto num11 = a[i - 5]; auto num10 = a[i - 6]; auto num9 = a[i - 7]; auto num8 = a[i - 8]; auto num7 = a[i - 9]; auto num6 = a[i - 10]; auto num5 = a[i - 11]; auto num4 = a[i - 12]; auto num3 = a[i - 13]; auto num2 = a[i - 14]; auto num1 = a[i - 15]; auto num0 = a[i - 16]; // Process all 16 elements (your bucket logic here) tpxb_process_element(num15, buf, bucket1, shr1, mask1); tpxb_process_element(num14, buf, bucket1, shr1, mask1); tpxb_process_element(num13, buf, bucket1, shr1, mask1); tpxb_process_element(num12, buf, bucket1, shr1, mask1); tpxb_process_element(num11, buf, bucket1, shr1, mask1); tpxb_process_element(num10, buf, bucket1, shr1, mask1); tpxb_process_element(num9, buf, bucket1, shr1, mask1); tpxb_process_element(num8, buf, bucket1, shr1, mask1); tpxb_process_element(num7, buf, bucket1, shr1, mask1); tpxb_process_element(num6, buf, bucket1, shr1, mask1); tpxb_process_element(num5, buf, bucket1, shr1, mask1); tpxb_process_element(num4, buf, bucket1, shr1, mask1); tpxb_process_element(num3, buf, bucket1, shr1, mask1); tpxb_process_element(num2, buf, bucket1, shr1, mask1); tpxb_process_element(num1, buf, bucket1, shr1, mask1); tpxb_process_element(num0, buf, bucket1, shr1, mask1); } // Handle remainder (less than 16 elements) for(uint32_t j = i; j > 0; --j) { auto num = a[j - 1]; auto bkeyni = (num >> shr1) & mask1; auto offset = --bucket1[bkeyni]; buf[offset] = num; } } #endif /* THREE_PASS_XB_H */