magyarsort/gptsort.h

136 lines
4.4 KiB
C
Raw Normal View History

#include <cmath>
#include <vector>
#include <algorithm>
#include "magyarsort.h"
// ChatGPT and me did this space partitioning bucket sort
void gpt_bucket_sort(uint32_t* array, int n) {
// Calculate the number of buckets to use
int num_buckets = std::sqrt(n);
// Create a vector of buckets
std::vector<std::vector<uint32_t>> buckets(num_buckets);
// Calculate the range of values that each bucket can hold
uint32_t min_value = *std::min_element(array, array + n);
uint32_t max_value = *std::max_element(array, array + n);
uint32_t range = max_value - min_value + 1;
uint32_t bucket_size = range / num_buckets + 1;
// Distribute the elements of the array into the buckets
for (int i = 0; i < n; i++) {
// Calculate the bucket index for this element
// using the range of values and the bucket size as the divisor
int bucket_index = (array[i] - min_value) / bucket_size;
buckets[bucket_index].push_back(array[i]);
}
// Sort the elements in each bucket using std::sort
for (int i = 0; i < num_buckets; i++) {
std::sort(buckets[i].begin(), buckets[i].end());
}
// Concatenate the buckets to get the sorted array
int k = 0;
for (int i = 0; i < num_buckets; i++) {
for (int j = 0; j < buckets[i].size(); j++) {
array[k++] = buckets[i][j];
}
}
}
// Further optimizations (no chatGPT)
void magyar_bucket_sort(uint32_t* array, int n) {
// Calculate the number of buckets to use
int num_buckets = std::sqrt(n);
// Create a vector of buckets
std::vector<std::vector<uint32_t>> buckets(num_buckets);
// O(n)
// Calculate the range of values that each bucket can hold
auto mm = std::minmax_element(array, array + n);
uint32_t min_value = *mm.first;
uint32_t max_value = *mm.second;
uint32_t range = max_value - min_value + 1;
uint32_t bucket_size = range / num_buckets + 1;
// Distribute the elements of the array into the buckets
for (int i = 0; i < n; ++i) {
// Calculate the bucket index for this element
// using the range of values and the bucket size as the divisor
int bucket_index = (array[i] - min_value) / bucket_size;
buckets[bucket_index].push_back(array[i]);
}
// sqrt(n) * (sqrt(n)*log(sqrt(n))) = n*log(sqrt(n)) for std::sort and linear for magyarsort but less mem use!
// Sort the elements in each bucket using std::sort
for (int i = 0; i < num_buckets; ++i) {
if(buckets[i].size() >= 96) { // what to choose here is pretty random
MagyarSort::sort<uint32_t>(&(buckets[i][0]), buckets[i].size());
} else {
std::sort(buckets[i].begin(), buckets[i].end());
}
}
// Concatenate the buckets to get the sorted array
int k = 0;
for (int i = 0; i < num_buckets; ++i) {
for (int j = 0; j < buckets[i].size(); ++j) {
array[++k] = buckets[i][j];
}
}
}
/** Simplify magyarbucket */
void magyar_bucket_sort2(uint32_t* array, int n) {
// ensure bucket size as POT
int bucketSize = 65536;
// O(n)
// Calculate the range of values that each bucket can hold
auto mm = std::minmax_element(array, array + n);
uint32_t min = *mm.first;
uint32_t max = *mm.second;
uint32_t range = max - min + 1;
// Calculate number of buckets from size
// bucketSize = (range / numBuckets) + 1
// so:
// bucketSize + 1 = range / numBuckets
// numBuckets * (bucketSize + 1) = range
// so:
// numBuckets = range / (bucketSize + 1)
uint32_t numBuckets = range / bucketSize + 1;
// Create a vector of buckets
std::vector<std::vector<uint32_t>> buckets(numBuckets);
// Distribute the elements of the array into the buckets
for (int i = 0; i < n; ++i) {
// Calculate the bucket index for this element
// using the range of values and the bucket size as the divisor
int bucket_index = (array[i] - min) / bucketSize; // bitshift likely
buckets[bucket_index].push_back(array[i]);
}
// sqrt(n) * (sqrt(n)*log(sqrt(n))) = n*log(sqrt(n)) for std::sort and linear for magyarsort but less mem use!
// Sort the elements in each bucket using std::sort
for (int i = 0; i < numBuckets; ++i) {
if(buckets[i].size() >= 96) { // what to choose here is pretty random
MagyarSort::sort<uint32_t>(&(buckets[i][0]), buckets[i].size());
} else {
std::sort(buckets[i].begin(), buckets[i].end());
}
}
// Concatenate the buckets to get the sorted array
int k = 0;
for (int i = 0; i < numBuckets; ++i) {
for (int j = 0; j < buckets[i].size(); ++j) {
array[++k] = buckets[i][j];
}
}
}