magyarsort/threepass_xbit.h

277 lines
9.4 KiB
C
Raw Normal View History

2025-09-29 18:21:16 +02:00
#ifndef THREE_PASS_XB_H
#define THREE_PASS_XB_H
/* Basically like threepass.h but but fewer bits - only for thiersort3! */
/* How the 28-30 bits gets separated? This is chosen because I saw that: */
/* - in float trickery I saw at around 4 billion the buckets change around 200 million */
/* - Which is smaller than 1/2 or 1/4 or 1/8 or 1/16 of it because 16*200 mil = 3.2 bill 28 bit is needed */
/* - This means those bits in numbers DO get used when we are running as internal sort of thier3 */
/* - But the numbers high bits (29..32th bits) stay the same inside each bucket so we spare it! */
/* - If you know your data does not have all the range of 32 bits you can #define these by #define CUSTOM_TPBX_BITS */
#ifndef CUSTOM_TPBX_BITS
#define TPBX1 10 // top
#define TPBX2 9 // mid
#define TPBX3 9 // bottom
#endif /* CUSTOM_TPBX_BITS */
static inline constexpr uint32_t min3u32_xb(uint32_t a, uint32_t b, uint32_t c) noexcept {
2025-09-29 18:21:16 +02:00
return (a <= b) ?
((a <= c) ? a : c) :
((b <= c) ? b : c);
}
static inline void tpxb_process_element(uint32_t num, uint32_t* arr, uint32_t* bucket,
uint32_t shr, uint32_t mask) {
auto bkeyni = (num >> shr) & mask;
auto offset = --bucket[bkeyni];
arr[offset] = num;
}
2025-09-29 18:21:16 +02:00
/**
* Simple three-pass (ok: 3 + 1) bottom-up internal radix sort writter for thiersort3
*
* @param a The array to sort - will be changed too!
* @param buf Result array with the same size - result will be here
* @param n The number of elements
*/
static inline void threepass_xb(uint32_t *a, uint32_t *buf, int n) noexcept {
2025-09-29 18:21:16 +02:00
assert(buf != NULL);
constexpr int shr1 = TPBX3 + TPBX2;
constexpr int shr2 = TPBX3;
constexpr int shr3 = 0;
constexpr int mask1 = (1 << TPBX1) - 1;
constexpr int mask2 = (1 << TPBX2) - 1;
constexpr int mask3 = (1 << TPBX3) - 1;
/* helper buffers. */
int sz = n * sizeof(a[0]);
2025-09-29 18:21:16 +02:00
static thread_local uint32_t bucket1[1 << TPBX1];
2025-09-29 18:21:16 +02:00
memset(bucket1, 0, (1 << TPBX1) * sizeof(uint32_t));
static thread_local uint32_t bucket2[1 << TPBX2];
2025-09-29 18:21:16 +02:00
memset(bucket2, 0, (1 << TPBX2) * sizeof(uint32_t));
static thread_local uint32_t bucket3[1 << TPBX3];
2025-09-29 18:21:16 +02:00
memset(bucket3, 0, (1 << TPBX3) * sizeof(uint32_t));
/* Count occurences (can count together with good ILP) */
#pragma GCC unroll 64
for(uint32_t i = 0; i < n; ++i) {
++bucket1[(a[i] >> shr1) & mask1];
++bucket2[(a[i] >> shr2) & mask2];
++bucket3[(a[i] >> shr3) & mask3];
}
2025-09-29 18:21:16 +02:00
/* Count prefix sums - try as much ILP as possible because bigger arrays than usual! */
uint32_t prev1 = 0;
uint32_t prev2 = 0;
uint32_t prev3 = 0;
uint32_t common = min3u32_xb(
(1 << TPBX1),
(1 << TPBX2),
(1 << TPBX3)
);
int i = 0;
2025-09-29 18:21:16 +02:00
#pragma GCC unroll 8
for (; i < common; ++i) {
bucket1[i] += prev1;
prev1 = bucket1[i];
bucket2[i] += prev2;
prev2 = bucket2[i];
bucket3[i] += prev3;
prev3 = bucket3[i];
}
/* Do remaining 1 */
for (int j = i; j < (1 << TPBX1); ++j) {
2025-09-29 18:21:16 +02:00
bucket1[j] += prev1;
prev1 = bucket1[j];
}
/* Do remaining 2 */
for (int j = i; j< (1 << TPBX2); ++j) {
2025-09-29 18:21:16 +02:00
bucket2[j] += prev2;
prev2 = bucket2[j];
}
/* Do remaining 3 */
for (int j = i; j < (1 << TPBX3); ++j) {
2025-09-29 18:21:16 +02:00
bucket3[j] += prev3;
prev3 = bucket3[j];
}
// Bottom digit a->buf
// right-to-left to ensure already sorted digits order we keep for iterations
#pragma GCC unroll 3
for(i = n; i >= 16; i -= 16) {
// Prefetch the NEXT block (not current) at optimal distance
if (i > 17) { // Ensure we don't prefetch out of bounds
__builtin_prefetch(&a[i - 17]);
}
if (i > 17*2) { // Ensure we don't prefetch out of bounds
__builtin_prefetch(&a[i - 17*2]);
}
if (i > 17*3) { // Ensure we don't prefetch out of bounds
__builtin_prefetch(&a[i - 17*3]);
}
// Process 16 elements in reverse order
auto num15 = a[i - 1];
auto num14 = a[i - 2];
auto num13 = a[i - 3];
auto num12 = a[i - 4];
auto num11 = a[i - 5];
auto num10 = a[i - 6];
auto num9 = a[i - 7];
auto num8 = a[i - 8];
auto num7 = a[i - 9];
auto num6 = a[i - 10];
auto num5 = a[i - 11];
auto num4 = a[i - 12];
auto num3 = a[i - 13];
auto num2 = a[i - 14];
auto num1 = a[i - 15];
auto num0 = a[i - 16];
// Process all 16 elements (your bucket logic here)
tpxb_process_element(num15, buf, bucket3, shr3, mask3);
tpxb_process_element(num14, buf, bucket3, shr3, mask3);
tpxb_process_element(num13, buf, bucket3, shr3, mask3);
tpxb_process_element(num12, buf, bucket3, shr3, mask3);
tpxb_process_element(num11, buf, bucket3, shr3, mask3);
tpxb_process_element(num10, buf, bucket3, shr3, mask3);
tpxb_process_element(num9, buf, bucket3, shr3, mask3);
tpxb_process_element(num8, buf, bucket3, shr3, mask3);
tpxb_process_element(num7, buf, bucket3, shr3, mask3);
tpxb_process_element(num6, buf, bucket3, shr3, mask3);
tpxb_process_element(num5, buf, bucket3, shr3, mask3);
tpxb_process_element(num4, buf, bucket3, shr3, mask3);
tpxb_process_element(num3, buf, bucket3, shr3, mask3);
tpxb_process_element(num2, buf, bucket3, shr3, mask3);
tpxb_process_element(num1, buf, bucket3, shr3, mask3);
tpxb_process_element(num0, buf, bucket3, shr3, mask3);
}
// Handle remainder (less than 16 elements)
for(uint32_t j = i; j > 0; --j) {
auto num = a[j - 1];
auto bkeyni = (num >> shr3) & mask3;
auto offset = --bucket3[bkeyni];
buf[offset] = num;
}
2025-09-29 18:21:16 +02:00
// Mid digit buf->a
// right-to-left to ensure already sorted digits order we keep for iterations
#pragma GCC unroll 3
for(i = n; i >= 16; i -= 16) {
// Prefetch the NEXT block (not current) at optimal distance
if (i > 17) { // Ensure we don't prefetch out of bounds
__builtin_prefetch(&buf[i - 17]);
}
if (i > 17*2) { // Ensure we don't prefetch out of bounds
__builtin_prefetch(&buf[i - 17*2]);
}
if (i > 17*3) { // Ensure we don't prefetch out of bounds
__builtin_prefetch(&buf[i - 17*3]);
}
// Process 16 elements in reverse order
auto num15 = buf[i - 1];
auto num14 = buf[i - 2];
auto num13 = buf[i - 3];
auto num12 = buf[i - 4];
auto num11 = buf[i - 5];
auto num10 = buf[i - 6];
auto num9 = buf[i - 7];
auto num8 = buf[i - 8];
auto num7 = buf[i - 9];
auto num6 = buf[i - 10];
auto num5 = buf[i - 11];
auto num4 = buf[i - 12];
auto num3 = buf[i - 13];
auto num2 = buf[i - 14];
auto num1 = buf[i - 15];
auto num0 = buf[i - 16];
// Process all 16 elements (your bucket logic here)
tpxb_process_element(num15, a, bucket2, shr2, mask2);
tpxb_process_element(num14, a, bucket2, shr2, mask2);
tpxb_process_element(num13, a, bucket2, shr2, mask2);
tpxb_process_element(num12, a, bucket2, shr2, mask2);
tpxb_process_element(num11, a, bucket2, shr2, mask2);
tpxb_process_element(num10, a, bucket2, shr2, mask2);
tpxb_process_element(num9, a, bucket2, shr2, mask2);
tpxb_process_element(num8, a, bucket2, shr2, mask2);
tpxb_process_element(num7, a, bucket2, shr2, mask2);
tpxb_process_element(num6, a, bucket2, shr2, mask2);
tpxb_process_element(num5, a, bucket2, shr2, mask2);
tpxb_process_element(num4, a, bucket2, shr2, mask2);
tpxb_process_element(num3, a, bucket2, shr2, mask2);
tpxb_process_element(num2, a, bucket2, shr2, mask2);
tpxb_process_element(num1, a, bucket2, shr2, mask2);
tpxb_process_element(num0, a, bucket2, shr2, mask2);
}
// Handle remainder (less than 16 elements)
for(uint32_t j = i; j > 0; --j) {
auto num = buf[j - 1];
auto bkeyni = (num >> shr2) & mask2;
auto offset = --bucket2[bkeyni];
a[offset] = num;
}
2025-09-29 18:21:16 +02:00
// Top digit a->buf
// right-to-left to ensure already sorted digits order we keep for iterations
#pragma GCC unroll 3
for(i = n; i >= 16; i -= 16) {
// Prefetch the NEXT block (not current) at optimal distance
if (i > 17) { // Ensure we don't prefetch out of bounds
__builtin_prefetch(&a[i - 17]);
}
if (i > 17*2) { // Ensure we don't prefetch out of bounds
__builtin_prefetch(&a[i - 17*2]);
}
if (i > 17*3) { // Ensure we don't prefetch out of bounds
__builtin_prefetch(&a[i - 17*3]);
}
// Process 16 elements in reverse order
auto num15 = a[i - 1];
auto num14 = a[i - 2];
auto num13 = a[i - 3];
auto num12 = a[i - 4];
auto num11 = a[i - 5];
auto num10 = a[i - 6];
auto num9 = a[i - 7];
auto num8 = a[i - 8];
auto num7 = a[i - 9];
auto num6 = a[i - 10];
auto num5 = a[i - 11];
auto num4 = a[i - 12];
auto num3 = a[i - 13];
auto num2 = a[i - 14];
auto num1 = a[i - 15];
auto num0 = a[i - 16];
// Process all 16 elements (your bucket logic here)
tpxb_process_element(num15, buf, bucket1, shr1, mask1);
tpxb_process_element(num14, buf, bucket1, shr1, mask1);
tpxb_process_element(num13, buf, bucket1, shr1, mask1);
tpxb_process_element(num12, buf, bucket1, shr1, mask1);
tpxb_process_element(num11, buf, bucket1, shr1, mask1);
tpxb_process_element(num10, buf, bucket1, shr1, mask1);
tpxb_process_element(num9, buf, bucket1, shr1, mask1);
tpxb_process_element(num8, buf, bucket1, shr1, mask1);
tpxb_process_element(num7, buf, bucket1, shr1, mask1);
tpxb_process_element(num6, buf, bucket1, shr1, mask1);
tpxb_process_element(num5, buf, bucket1, shr1, mask1);
tpxb_process_element(num4, buf, bucket1, shr1, mask1);
tpxb_process_element(num3, buf, bucket1, shr1, mask1);
tpxb_process_element(num2, buf, bucket1, shr1, mask1);
tpxb_process_element(num1, buf, bucket1, shr1, mask1);
tpxb_process_element(num0, buf, bucket1, shr1, mask1);
}
// Handle remainder (less than 16 elements)
for(uint32_t j = i; j > 0; --j) {
auto num = a[j - 1];
auto bkeyni = (num >> shr1) & mask1;
auto offset = --bucket1[bkeyni];
buf[offset] = num;
}
2025-09-29 18:21:16 +02:00
}
#endif /* THREE_PASS_XB_H */