
Introduction to qbe
A lightweight compiler backend

Drew DeVault
SourceHut

January 16, 2022

1 / 17

What is qbe?

qbe is an optimizing compiler backend which provides ”70% of the performance of
advanced compilers in 10% of the code.”

• Similar to LLVM in purpose

• Compiles an intermediate representation (IR) to machine code

• Supports x86 64, aarch64, and riscv64 today

• About 14,000 lines of C99 code

2 / 17

qbe IR

function w $add(w %a, w %b) {

@start

%c =w add %a, %b

ret %c

}

export function w $main() {

@start

%r =w call $add(w 1, w 1)

call $printf(l $fmt, w %r, ...)

ret 0

}

data $fmt = { b "1 + 1 = %d!\n", b 0 }

3 / 17

qbe IR

.text

add:

pushq %rbp

movq %rsp, %rbp

movl %edi, %eax

addl %esi, %eax

leave

ret

.data

.balign 8

fmt:

.ascii "1 + 1 = %d!\n"

.byte 0

.text

.globl main

main:

pushq %rbp

movq %rsp, %rbp

movl $1, %esi

movl $1, %edi

callq add

movl %eax, %esi

leaq fmt(%rip), %rdi

movl $0, %eax

callq printf

movl $0, %eax

leave

ret

4 / 17

qbe usage

$ qbe test.ssa > test.s

$ cc -o test test.s

$./test

1 + 1 = 2!

5 / 17

cproc

https://sr.ht/~mcf/cproc/

• Self-hosting C11 compiler based on qbe

• 8,000 lines of C

• Builds GCC 4.7, binutils, util-linux, BearSSL, git, u-Boot, and much more∗

• Does not have: VLAs, TLS, PIC, inline assembly

∗https://github.com/oasislinux/oasis/issues/13
6 / 17

https://sr.ht/~mcf/cproc/
https://github.com/oasislinux/oasis/issues/13

cproc

$ cat test.c

#include <stdio.h>

int main() {

printf("Hello world!\n");

}

$ cproc -emit-qbe -o - test.c

data $.Lstring.2 = align 1 { b "Hello world!\012\000", }

export

function w $main() {

@start.1

@body.2

%.1 =w call $printf(l $.Lstring.2, ...)

ret 0

}

7 / 17

Performance?

“70% of the performance of advanced compilers in 10% of the code.”

8 / 17

Performance?

“70% of the performance of advanced compilers in 10% of the code.”

Compiler Lines of code Number of files

LLVM 10,000,000 87,000
GCC† 9,000,000 100,000
qbe 14,000 55

†Not including its frontends
9 / 17

Performance?

“70% of the performance of advanced compilers in 10% 0.1% of the code.”

Compiler Lines of code Number of files

LLVM 10,000,000 87,000
GCC‡ 9,000,000 100,000
qbe 14,000 55

‡Not including its frontends
10 / 17

Performance?

Let’s compile BearSSL with each compiler and compare the results.

11 / 17

Performance!

Let’s compile BearSSL with cproc and gcc and compare the results.

Compiler Build (seconds) Tests (seconds)

Clang 12.0.1 with -O2 5.05 45.91
GCC 1.11.2 with -O2 4.24 43.79
cproc 67aee986 1.30 62.87

Lower numbers are better. Run on an AMD Ryzen 7 3700X on Alpine Linux edge.

12 / 17

Performance!

“70% of the performance of advanced compilers in 10% of the code.”

73% of the runtime performance and
380% the compile performance of advanced compilers in
0.1% of the code.

...based on building & testing BearSSL. Yay!

13 / 17

BearSSL speed tests

Selected results from BearSSL testspeed (all values in MB/s):

Test GCC cproc

SHA-256 295 MB/s 159 MB/s
SHA-512 463 MB/s 225 MB/s
AES-128 266 MB/s 69 MB/s
ChaCha20 545 MB/s 109 MB/s
Poly1305 1593 MB/s 481 MB/s
SHAKE256 526 MB/s 230 MB/s

Higher numbers are better. Run on an AMD Ryzen 7 3700X on Alpine Linux edge.
Full results:
https://mirror.drewdevault.com/bearssl-gcc-11.2.1.log

https://mirror.drewdevault.com/bearssl-cproc-67aee986.log

14 / 17

https://mirror.drewdevault.com/bearssl-gcc-11.2.1.log
https://mirror.drewdevault.com/bearssl-cproc-67aee986.log

Performance!

“70% of the performance of advanced compilers in 10% of the code.”

73% 25-75% of the runtime performance and
380% the compile performance of advanced compilers in
0.1% of the code.

...based BearSSL testspeed. But: is it worth it?

15 / 17

Ports

qbe ports today:

• x86 64: 2,118 lines of code

• aarch64: 1,665 lines of code

• riscv64: 1,458 lines of code; 341 commits by one (talented) author over 8 months

qbe ports tomorrow?

• ppc64 (big endian?)

• 32-bit: i486 et al, armhf et al, riscv32

• Others?

• Plus: Plan 9

16 / 17

qbe

”QBE aims to be a pure C embeddable backend that provides 70% of the performance of
advanced compilers in 10% of the code. Its small size serves both its aspirations of
correctness and our ability to understand, fix, and improve it. It also serves its users by
providing trivial integration and great flexibility.”

qbe: https://c9x.me/compile

cproc: https://sr.ht/~mcf/cproc

17 / 17

https://c9x.me/compile
https://sr.ht/~mcf/cproc

